

University of Birmingham simulations update

P.P. Allport, L. Gonella, P. Ilten, P.G. Jones, P.R. Newman, H. Wennlöf 14th of May 2020

Introduction

- EICROOT results presented two weeks ago; http://cern.ch/go/6fN8
- Baseline layouts for silicon + gas TPC and all-silicon presented, and used for further studies
- New simulations for Pavia workshop
 - Adding a third vertex layer
 - Tests investigating new beampipe radius impact in central region
 - Studies of 1.5 T vs 3 T magnetic fields
- Simulations for tracking inputs requested by Central Detector / Integration / Magnet WG
 - Angular resolutions. Currently have them at vertex position

Adding a third inner layer

- Parameters used:
 - Particle: π+
 - Transverse momentum range: 0 to 5 GeV/c / 0 to 50 GeV/c
 - Pseudorapidity range: -0.5 ≤ η ≤ $0.5 / 0 \le η \le 2.5$
 - Default pixel size: 20x20 μm²
 - Material budget: 0.3/0.8 % X₀ inner/outer layers, 1.6 % time-stamping layer
 - Magnetic field: uniform 1.5 T
- Comparing baseline layouts (silicon+gas and all-silicon, with old beampipe) to the same with a third inner layer added (between the two already there)

Adding a third inner layer; silicon + gas

- In central region at momenta between 0 and 5 GeV/c:
 - No significant difference in relative momentum resolution
 - 3 layers detrimental to the pointing resolutions, especially the longitudinal at low momenta.
 Less so the higher the momentum

Relative momentum resolution

Longitudinal pointing resolution

Transverse pointing resolution

Adding a third inner layer; all-silicon

This study with the all-silicon optimised disk layout, in a pseudorapidity range of 0 to 2.5.

Relative momentum resolution

Transverse pointing resolution

Adding a third inner layer

Conclusions:

- 3 layers is detrimental to only pointing resolutions at momenta below 5 GeV/c. Other than this, it has no effect or **improves** the resolutions.
- Note: this is **not** considering possible dead pixels or otherwise missed layers, which is when the third layer will be very useful to have.

Longitudinal pointing resolution, all-silicon

New beampipe comparison

- Old beampipe radius: 18 mm
 - Tests done with 2 and 3 inner layers
- New beampipe radius: 31 mm
 - Tests done with inner layers moved out, and new layout without timestamping layer
- Same TPC (EICROOT standard) always present
- Parameters used:
 - Particle: π+
 - Transverse momentum range: 0 to 5 GeV/c
 - Pseudorapidity range: $-0.5 \le \eta \le 0.5$
 - Default pixel size: 20x20 μm²
 - Material budget: 0.3/0.8 % X₀ inner/outer layers, 1.6 % timestamping layer
 - Magnetic field: uniform 1.5 T

New beampipe comparison

Relative momentum resolution

Main comparisons:

- Blue to darker blue
- Green to darker green

Transverse pointing resolution

New beampipe comparison

Conclusions:

- 3 inner layers detrimental to pointing resolutions at these low momenta
- New beampipe makes pointing resolutions worse, but less so as momentum increases
- Note: smaller beampipe is not an option. Study made in order to investigate impact of more realistic beampipe

Longitudinal pointing resolution

1.5 T and 3 T in the barrel - preliminary

- Parameters used:
 - Particle: π+
 - Transverse momentum range: 0 to 5 GeV/c
 - Pseudorapidity range: -0.5 ≤ η ≤ 0.5
 - Pixel size: 20x20 µm²
- Magnetic field uniform. Strength varied, being either 1.5 T or 3 T
- Baseline layout used. Old beampipe, to save time in rerunning comparison simulations

1.5 T and 3 T in the barrel - preliminary

Relative momentum resolution

- Large improvement in relative momentum resolution
- Little difference in pointing resolutions
 - Transverse pointing resolution gets worse at 3 T at the lowest momenta, due to spiralling

Transverse pointing resolution

Longitudinal pointing resolution

Preliminary angular resolutions

- Taken as the standard deviation of a Gaussian fit to difference between reconstructed and truth, for different momenta, at the vertex position.
- θ and ϕ resolutions investigated for different geometries.
- No dedicated studies made for angular resolutions. The resolutions presented here are all add-ons using data from simulations with different main purposes.
- Geometries shown on next slide. Results on the following.
- Pixel size used in silicon: 20x20 μm².
- Standard EICROOT TPC used, when present.
- Magnetic field: uniform 1.5 T.

Geometries

Baseline, investigated in central region. Pions, 0 to 5 GeV/c.

All-silicon, investigated in central regions ($|\eta| \le 1$, 0 to 30 GeV/c electrons) and forward regions ($1 \le |\eta| \le 2.5$, 0 to 50 GeV/c electrons), for different outer radii.

Results, silicon + gas TPC, central region

Phi resolution

Different number of layers in central SVT tested.

Zoomed in

Zoomed in

Results, all-silicon, different radii. Central

Theta resolution

Phi resolution

- Central regions, |η| ≤ 1
- Electrons, 0 to 30 GeV/c

Results, all-silicon, different radii. Forward

Theta resolution

Phi resolution

- Forward regions, $1 \le \eta \le 2.5$
- Electrons, 0 to 50 GeV/c